Braided Matrix Structure of the Sklyanin Algebra and of the Quantum Lorentz Group
نویسنده
چکیده
Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups Uq(g). They have the same FRT generators l± but a matrix braided-coproduct ∆L = L⊗L where L = l+Sl−, and are self-dual. As an application, the degenerate Sklyanin algebra is shown to be isomorphic to the braided matrices BMq(2); it is a braided-commutative bialgebra in a braided category. As a second application, we show that the quantum double D(Uq(sl2)) (also known as the ‘quantum Lorentz group’) is the semidirect product as an algebra of two copies of Uq(sl2), and also a semidirect product as a coalgebra if we use braid statistics. We find various results of this type for the doubles of general quantum groups and their semi-classical limits as doubles of the Lie algebras of Poisson Lie groups.
منابع مشابه
Braided Momentum in the Q-poincare Group
The q-Poincaré group of [1] is shown to have the structure of a semidirect product and coproduct B>⊳ ̃ SOq(1, 3) where B is a braided-quantum group structure on the q-Minkowski space of 4-momentum with braided-coproduct ∆p = p⊗ 1+1⊗p. Here the necessary B is not a usual kind of quantum group, but one with braid statistics. Similar braided-vectors and covectors V (R), V (R) exist for a general R...
متن کاملq-EUCLIDEAN SPACE AND QUANTUM GROUP WICK ROTATION BY TWISTING
We study the quantum matrix algebra R21x1x2 = x2x1R and for the standard 2×2 case propose it for the co-ordinates of q-deformed Euclidean space. The algebra in this simplest case is isomorphic to the usual quantum matrices Mq(2) but in a form which is naturally covariant under the Euclidean rotations SUq(2)⊗SUq(2). We also introduce a quantum Wick rotation that twists this system precisely into...
متن کاملQuantum Squeezed Light Propagation in an Optical Parity-Time (PT)-Symmetric Structure
We investigate the medium effect of a parity-time (PT)-symmetric bilayer on the quantum optical properties of an incident squeezed light at zero temperature (T=0 K). To do so, we use the canonical quantization approach and describe the amplification and dissipation properties of the constituent layers of the bilayer structure by Lorentz model to analyze the quadrature squeezing of the outgoing ...
متن کاملA braided Yang-Baxter Algebra in a Theory of two coupled Lattice Quantum KdV: algebraic properties and ABA representations.
A braided Yang-Baxter Algebra in a Theory of two coupled Lattice Quantum KdV: algebraic properties and ABA representations. Abstract A generalization of the Yang-Baxter algebra is found in quantizing the mon-odromy matrix of two (m)KdV equations discretized on a space lattice. This braided Yang-Baxter equation still ensures that the transfer matrix generates operators in involution which form t...
متن کاملAlgebras and Hopf Algebras in Braided Categories
This is an introduction for algebraists to the theory of algebras and Hopf algebras in braided categories. Such objects generalise super-algebras and super-Hopf algebras, as well as colour-Lie algebras. Basic facts about braided categories C are recalled, the modules and comodules of Hopf algebras in such categories are studied, the notion of ‘braided-commutative’ or ‘braided-cocommutative’ Hop...
متن کامل